

A Smart Cache for a SmartNIC!

Scaling End-Host Networking to 400Gbps and Beyond

Annus Zulfiqar, Ali Imran, Venkat Kunaparaju, Ben Pfaff¹, Gianni Antichi², Muhammad Shahbaz¹
Purdue University, ¹Feldera, ²Politecnico di Milano

Abstract and Motivation

- Virtual switches optimize performance by caching multi-table lookup traversals to single-table Megaflow cache, which SmartNICs offload directly to hardware
- We present Gigaflow: a multi-table sub-traversal cache for SmartNICs, designed to capture a much larger rule space using the same cache size

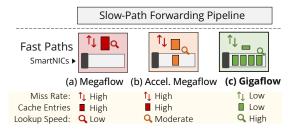


Figure 1: Comparison of OVS cache miss rate, entries and lookup speed

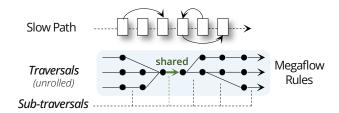


Figure 2: A traversal of slow-path pipeline yields a Megaflow rule

- Open vSwitch caches traversals into Megaflow and can't share sub-traversals among traffic, making the captured rule space proportional to cache size
- By caching sub-traversals into a multi-table cache, we can capture 3 orders
 of magnitude more rule space, attain 51% higher cache hit rate, and 31%
 lower end-to-end packet latency, with manageable processing overhead

Design: A Pipeline of TCAM Tables to Cache Sub-Traversals

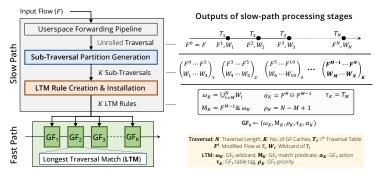


Figure 3: A high-level view of slow-path processing for cache misses in Gigaflow

The slow-path processes cache misses through its userspace forwarding pipeline and **unrolls the traversal**. A **sub-traversal partitioning algorithm** explores its possible partitions to **maximize disjointedness in sub-traversal matching fields**, which maximizes the captured cross-product rule space. We convert these sub-traversals into Gigaflow cache entries.

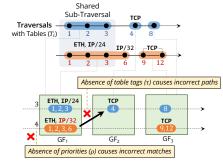
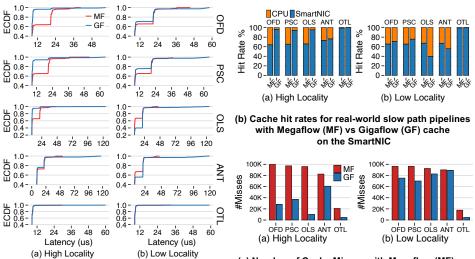
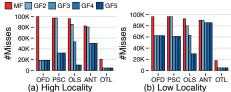



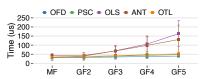
Figure 4: An example Gigaflow fast-path with cache entries

The multi-table cache maps nicely to RMT architecture, where individual tables contribute sub-traversal-level cache hits. To ensure lookup correctness, **Gigaflow** uses priorities (ρ) and table tags (τ) for **Longest Traversal Matching (LTM)**.


Evaluation and Results

(a) End-to-end latency with Megaflow (MF) vs

Gigaflow (GF) cache in high/low locality


(c) Number of Cache Misses with Megaflow (MF) vs Gigaflow (GF) cache on the SmartNIC

(d) Cache Misses vs. Number of Gigaflow tables

	OFD	PSC	OLS	ANT	OTL
Megaflow	32K	32K	32K	32K	32K
Gigaflow	14.7M	4.9M	10.8M	1.3M	48K

(e) Flow space capacity of Megaflow and Gigaflow cache with 32K entries

(f) Average cache miss processing time with increasing Gigaflow tables and unlimited entries