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AI-driven Optimization for Chip Design

1. Motivation – Why AI for Optimization

2. The Reinforcement-Learning Optimization Paradigm
– Search spaces, acquisition functions, metrics/KPIs, pareto fronts, learning

3. Applications of RL-driven Optimization
– Physical design, micro-architecture, search-based verification, test, analog, 3D exploration

4. Augmenting RL with GenAI – A World of Opportunity
– Optionality vs. optimality, evolution of human-compute i/f, data abstractions

(c) 2024 Synopsys, Inc.



Disclaimer

• This is a technology tutorial

• Several examples have been drawn from Synopsys research in AI

• The capabilities presented may not be indicative of Synopsys products

• For product-related information, please contact Synopsys sales

(c) 2024 Synopsys, Inc.



Motivation – Why AI for 
Optimization
AI-Assisted Hardware Design Tutorial – HotChips 2024
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PDK Generation

Chip Design: A Near-Infinite Problem Space
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Implication of Design Complexity

Quality of Result Throughput Cost

Discontinuous solution space

Noisy, non-convex, non-differentiable

Hard to break out of local minima

Hard to identify causal relationships

Only evaluate few variables at a time

Long latency (up to several days)

Underutilized compute resources

Limited reuse across projects

Decision fatigue!

>50% of time/compute
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user-time tool-time idle-time
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A Cascade of Intractable Problems

Architectural Design
Specification
System partitioning
Behavioral modeling

Structural Design
RTL creation
IP configuration
Function verification

Logic Design
Logic synthesis
Floorplanning
Data path

Layout Design
Place and route
Custom cells
RC, STA, DRC

Applications

Transactions

Functions

Circuits

Gates

Layouts

10s-100s of engineers, 18-24 months of development

Discrete optimization domains

Unidirectional translation steps

Limited design optionality

Long loops, no backwards flows

Decisions made on 1st level effects

Limited design optimality
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The Reinforcement-Learning 
Optimization Paradigm
AI-Assisted Hardware Design Tutorial – HotChips 2024
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What is Reinforcement Learning (RL)?
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How Does Reinforcement Learning  Work?
• The Agent interacts with the environment 

to sample trajectories of states & rewards:
1) The Agent observes the environment’s 

state St
2) The Agent selects an action At and applies 

it to the environment
3) The Agent receives a reward Rt

• Goal is to maximize this reward over time
4) A new state St+1 is entered

• Generally, the Agent implements a 
mapping from states to probabilities of 
possible actions

• RL algorithms can be model-based or 
model-free (twin)

• Value-based: Estimate value function given 
enough trajectories (SARSA, Q-learning)

• Policy-based: Directly estimate optimal policy 
(Monte-Carlo, deterministic policy gradient)

The learner and 
decision maker

Everything the Agent 
interacts with

Agent

Environment

Action
AtReward

Rt

State
St
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Benefits of Reinforcement Learning

• Focuses on the problem as a whole
o RL understands the goal, and can trade off 

short-term rewards for long-term benefits

• Does not need a separate data 
collection step
o Training data is the Agent’s experience, not a 

separate set established a-priori

• Works in dynamic, uncertain envs
o RL is inherently adaptive and built to respond 

to changes in the environment

RL can seek a long-term goal while exploring 
various possibilities autonomously

Citation. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction (2nd ed.). The MIT Press.
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DeepMind AlphaGo goes from zero to world champion in 40 days

RL Example: Learning to Play GO

Example: https://deepmind.com/blog/alphago-zero-learning-scratch/



Applying RL to Chip Design Problems
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AI-Assisted Design Search Problem Statement: 
Achieve lower leakage  
while maintaining
timing

Search Space
• Design, tool, flow 

parameters 
• Library cell parameters

Objectives (prioritized)
• Leakage
• TNS
• Secondary (e.g. DRC 

etc.)
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Best known custom result 
Months of manual tuning

100s of trials

RL autonomously finds
30% better leakage solution
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Applications of RL-driven 
Optimization
AI-Assisted Hardware Design Tutorial – HotChips 2024
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Architecture Test & SLM Implementation Signoff ManufacturingVerification

Opportunities to Apply RL Opt. Throughout the Flow

“Requirements”
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AI-Assisted Digital Implementation
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AI-Assisted Verification

https://community.arm.com/arm-research/b/articles/posts/efficient-bug-
discovery-with-machine-learning-for-hardware-verification 

Test Strategy (AI Agent)

Goal: Learn sequences of actions 
that lead to bug detection

Next op
Maximize 
likelihood of 
transition
to buggy state

Next state
Reward/penalty 

for the op 
choice

Using RL to optimize the verification 
process

(c) 2024 Synopsys, Inc.
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Example: Scheduling Highest ROI Tests
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Enabling Faster Time To Closure

0 5 10 15 20

Target

Traditional constrained-random

1000+

1000+ passes to reach target

C
o

v
e

ra
g

e

Test Seeds/ Passes

Days to Hours

AI-driven Coverage
Exceeds Target 

AI-driven Coverage:
100% of Target

(c) 2024 Synopsys, Inc.



And Many More Applications..
Test/ATPGCircuit Optimization 3D Integration
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How About Optimizing Across Design Abstractions?

• ISA, #ALU, FPU, 
issue ports, 
caches

Subsystems

• order of operations, loop 
structure/contentComponents

• complex function mapping, 
clock/self gatingFunctions

• memory configuration, cell mappingInstances
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Single-Abstraction: RL-based Layout Opt.
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Multi-Abstraction: Functions-to-Layout Opt.
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Top-20 Results: 5 Different Design Configs
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Functions with Different Layout Characteristics
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So, Which Design Variant is the Best One?
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Recentering Design Functions-to-Layout
Using AI to quickly traverse problem space towards ‘learned’ solutions

Frequency

Power Area



1) Objective: Energy Efficiency
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2) Objective: Performance
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Limitations of the RL-based Opt. Paradigm

1. Creating design variants is a high-effort task
• Verifying even a single version of a design is difficult, how to scale?

2. Evaluating design variants can be slow
• Typically involves synthesis, P&R, timing/power/IR/etc. analysis

(c) 2024 Synopsys, Inc.



Augmenting RL with GenAI –
A World of Opportunity
AI-Assisted Hardware Design Tutorial – HotChips 2024
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Captured

Design

“Journeys”

2nd Wave of AI : Generative Models Coming into Play
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INTERFACE
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Design debugging
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Design analysis
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PPA strategies
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Ref: Adapted from the Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM)
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Augmenting RL Opt. with Generative AI

• RL (Optimization)

• Uses tool engines to create and evaluate 
design data on the fly

• Signoff-accurate: Results are outcomes of 
existing tooling

• Overall slower, relies on process-level 
distribution

• Semi-automatic: Requires significant 
effort in describing design spaces, 
outcome metrics

Good at identifying optimality

• GenAI (Generation)

• Captures data history from prior design 
journeys

• Speculative: Results are outcomes of 
trained neural networks

• Overall faster, relies on data-level 
parallelization

• Highly autonomous: Capable of traversing 
the data abstraction stack quickly, and 
with limited guidance 

Good at generating optionality
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Remember: Limitations of RL-based Opt. 

1. Creating design variants is a high-effort task
• Verifying even a single version of a design is difficult, how to scale?

2. Evaluating design variants can be slow
• Typically involves synthesis, P&R, timing/power/IR/etc. analysis

Optionality

Optimality
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1. Research in HDL Generation

Bhuvnesh Kumar, Saurav Nanda, Ganapathy Parthasarathy, Pawan Patil, Austin 
Tsai and Parivesh Choudhary, "HDL-GPT: High-Quality HDL is All You Need," 
2024 Design Automation Conference (DAC)

arXiv:2407.18423v1 [cs.LG] 25 Jul 2024

Challenge HDL-GPT

Getting Started 1

Basics 1

Vectors 0.89

Module Hierarchy 0.33

Procedures 0.88

More Features 0.63

Basic Gates 0.88

Multiplexers 1

Arithmetic Circuits 0.57

K-Map to Circuits 0.75

Latches & Flip-flops 0.94

Counters 0.5

Shift Registers 0.44

Cellular Automata 0.67

FSM 0.61

Larger Circuits 0.71

Find bugs 0.6

Average 0.73

Comparison vs NYU Eval Set IIWorkflow for Data, Fine-tuning, Evaluation, and Verification/Feedback Pipeline for HDL-GPT

Optionality
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2. Research in 
PPA Speculation

• Challenge: Evaluation of 
design options slow, 
compute intensive

• Approach: Use GCNs for 
end-to-end PPA speculation

• 10X faster evaluation, 
broader and deeper search

RTL Generation

RTL Elaboration

Elaborated 

Netlist

End-to-End

QoR Models

Logic Synthesis

Placement/ Routing

Power, Area, WNS, TNS

RTL

PDK

RTL Parameters RTL Design

Physical 

Design PPA

Timing 

Target

End-to-End PPA 

Speculations

A. Levy, J. Walston, S. Samanta, P. Raina and S. Diamantidis, "FastPASE: An AI-Driven Fast 
PPA Speculation Engine for RTL Design Space Optimization," 2024 25th International 
Symposium on Quality Electronic Design (ISQED)

Optimality
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Using GCNs to Accelerate Design Evaluation

S. Gandham, J. Walston, S. Samanta, and S. Diamantidis, "CircuitSeer: RTL Post-
PnR Delay Prediction via Coupling Functional and Structural Representation" 
2024 ICCAD (accepted)

>500X 
faster 

exploration 
TAT

Optimality
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Summary – AI-Assisted Design

• RL has enabled the 1st wave of AI in chip design (optimization)
• Applications up and down the data abstraction stack

• GenAI is opening up opportunities to tackle the design process holistically
• Traverse data abstractions more efficiency

• Next level challenges emerge
• High-level planning driven by reuse, past experiences
• Fast assessment of design quality for functional correctness and performance

• Technology advancing very rapidly, accelerating pace of AI-assisted design
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Thank you!
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