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Al-driven Optimization for Chip Design

1. Motivation - Why Al for Optimization

2. The Reinforcement-Learning Optimization Paradigm
— Search spaces, acquisition functions, metrics/KPls, pareto fronts, learning

3. Applications of RL-driven Optimization

— Physical design, micro-architecture, search-based verification, test, analog, 3D exploration

4. Augmenting RL with GenAl — A World of Opportunity

— Optionality vs. optimality, evolution of human-compute i/f, data abstractions
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Disclaimer

* This is a technology tutorial
* Several examples have been drawn from Synopsys research in Al
* The capabilities presented may not be indicative of Synopsys products

* For product-related information, please contact Synopsys sales
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Motivation — Why Al for
Optimization

Al-Assisted Hardware Design Tutorial - HotChips 2024
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Chip Design: A Near-Infinite Problem Space

« Evaluate transistor Logic Area
choices early in design

« Re-generate lib files PPA Metrics
~ NS v |
i ' ' anua
Cell Design L!braryAttrlbutes W _
= | Timing, slew, Analysis
| power : WNS
o
\
! PDK Generation Process Attributes . @-«N |
; Metal stacks, N —
! Process parasitics, patterns
T~ ., T — o e
Evaluate metal stack

choices early in design
* Re-generate tlu+ files

_ « Evaluate design space
Flow Tool Constraints parameters and

Feedback Steps  Settings Guides constructs/inputs
(ad-hoc)
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Design Complexity Grows Exponentially

Memory
Config
\

V-Scaling

Performance
- Frequency, WNS, TNS, ...
- CTSlatency, ...
Floorplan IIIIII Area
Am=mEE
|l_*=== - Diearea, std cell area, ..
_ EBEE_ Areabycell VT, ...
¥ PR L PuE

Power Leakage
- Leakage
- leakage by cell type, by VT, ...

Power

IR Drop /
DTCO
Lib Cell —

e

o 1025 _

1014

Leakage

SYNOPSYS
(c) 2024 Synopsys, Inc.



Implication of Design Complexity

I
Quality of Result

Discontinuous solution space

Noisy, nhon-convex, non-differentiable
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Hard to break out of local minima

SYNOPSYs

Throughput

>50% of time/compute :

Hard to identify causal relationships

Only evaluate few variables at a time

Long latency (up to several days)

(c) 2024 Synopsys, Inc.

Cost

W user-time Mtool-time M idle-time

run
Monitor -
Analyze - |

0% 20% 40% 60% 80% 100%

Underutilized compute resources
Limited reuse across projects

Decision fatigue!
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Applications

Transactions

Functions

Circuits

Gates

Layouts

SYNOPSYS

Architectural Design

Specification
System partitioning
Behavioral modeling /

~ N

A Cascade of Intractable Problems

Discrete optimization domains

~./ Structural Design

_| RTL creation
IP configuration
Function verification

Unidirectional translation steps

Limited design optionality

/“

Long loops, no backwards flows

Decisions made on 1st level effects

Limited design optimality

J
't

Logic Design

_| Logic synthesis
Floorplanning
Data path

~

~./’ Layout Design

—_ _| Place and route

Custom cells
RC, STA, DRC

10s-100s of engineers, 18-24 months of development
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The Reinforcement-Learning
Optimization Paradigm

Al-Assisted Hardware Design Tutorial - HotChips 2024
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What is Reinforcement Learning (RL)?

Regression

Supervised

Classification

Clustering

Unsupervised

Dimensionality Reduction

Reinforcement

Machine Learning

SYNOPSYs
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Forecasting
Prediction

Image Recognition
Fraud Detection

Medical Diagnosis

Recommendation

Segmentation

Compression

Feature Extraction

Gaming & Negotiation

Learning Tasks/Skills

Real-Time Navigation



How Does Reinforcement Learning Work?

‘ The learner and |

* The Agent interacts with the environment
to sample trajectories of states & rewards:

1) The Agent observes the environment’s
state

2) The Agent selects an action A, and applies
it to the environment

3) The Agentreceives areward R,
* Goalis to maximize this reward over time
4) Anew state S,,, is entered

Reward
Rt

* Generally, the Agent implements a
Environment mapping from states to probabilities of
possible actions

* RL algorithms can be model-based or
model-free (twin)

Everything the Agent « Value-based: Estimate value function given
enough trajectories (SARSA, Q-learning)

* Policy-based: Directly estimate optimal policy
(Monte-Carlo, deterministic policy gradient)

SYMOPSYS' LiLIL]
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Benefits of Reinforcement Learning

starting position * Focuses on the problem as a whole

o RL understands the goal, and can trade off
short-term rewards for long-term benefits

opponent's move

our move

* Does not need a separate data
collection step

o Trainintg data is the Agent’s experience, not a
separate set established a-priori

opponent's move

our move

* Works in dynamic, uncertain envs

o RL is inherently adaptive and built to respond
to changes in the environment

opponent's move

our move

r-’Hr-’HIr—Hr-’Hr-’Hr-’H

RL can seek a long-term goal while exploring
various possibilities autonomously

SYNOPSYS L))
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RL Example: Learning to Play GO

DeepMind AlphaGo goes from zero to world champion in 40 days

8000 |
4000 -
s0d
2000 -

1000 -

Elo Rating

-1000 -

-2000 -

0 5 10 15 20 25 30 35 40

=== AlphaGo Zero 40 blocks sees AlphaGo Lee ssee AlphaGo Master

S‘/"UPS‘/S® Example: https://deepmind.com/blog/alphago-zero-learning-scratch/ bl 8




Applying RL to Chip Design Problems

[ Tunable Inputs ]

SYNOPSYs

State

[ Faster Results ]

Action

" Algorithm

Target
Metrics

Design
Trade-offs

Pareto
Fronts

> RL Agent
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Al-Assisted Design Search

TNS vs. Leakage

)
e
@ ...
() [ )
els] [ ]
9 [ X 1)
E oo 0% Best known custom result

100s of trials

° RL autonomously finds
30% better leakage solution

TNS

SYNOPSYS

(c) 2024 Synopsys, Inc.

Problem Statement:

Achieve lower leakage
while maintaining
timing

Search Space

* Design, tool, flow
parameters

* Library cell parameters

Objectives (prioritized)
* Leakage
* TNS

* Secondary (e.g. DRC
etc.)



Applications of RL-driven
Optimization

Al-Assisted Hardware Design Tutorial - HotChips 2024
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Opportunities to Apply RL Opt. Throughout the Flow

“‘Requirements”

Archltecture Verlflcatlon Test & SLM Implementatlon Slgnoff Manufacturlng

000000

FEEEE . B, TN, s
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Al-Assisted Digital Implementation
Highest Frequency

Floorplan Exploration 15% Faster

@© ® o * ° ® °

o . - ’

< . ® » . °

S~ L] PY o ®

N . Lo A .

0p) ° .

.G_J * oo o ¢ 73

O . . I Best tradeoff
O e 8% Faster

. 11% Smaller

Fmax

Smallest Die Size

Synopsys:  18% Smaller
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Al-Assisted Verification

Verification engineer 4

Adjustable knobs @ @ O e @
l |

of -

\/{/}\'

Design under test

Deterministic

Next state
Reward/penalty
for the op
choice

Non-deterministic

https://community.arm.com/arm-research/b/articles/posts/efficient-bug-

discovery-with-machine-learning-for-hardware-verification

SYNOPSYs

(c) 2024 Synopsys, Inc.

Test Strategy (Al Agent)

\ 4

Goal: Learn sequences of actions
that lead to bug detection

Packet-Based Design

Transaction
Layer To
Processor PHY

Retry Buffer K

Data Link
Layer

Processor P

Using RL to optimize the verification

process

Next op
Maximize
likelihood of
transition

to buggy state


https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification
https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification

Example: Scheduling Highest ROl Tests

60

ITERATIONS
Y N w N a
o o o o o

o

1

SYNOPSYs

21

41

61

Regression Test Distribution

L

01
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Enabling Faster Time To Closure

Al-driven Coverage
Exceeds Target

Traditional constrained-random /

1000+ passes to reach target

Al-driven Coverage:
100% of Target

Target

Coverage

Days to Hours

0 5 10 15 20 1000+

Test Seeds/ Passes

SYNOPSYs
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And Many More Applications..

Circuit Optimization Test/ATPG 3D Integration
‘ -
Devices & Parameters

» TR -
Q 1
= e
IS
g Abort-limit Coverage
o Sequential Pattern
#* depth count

S Min detect Power

# Devices " User User
ATPG
Targets

Settings

X

1000’s PVT Corners l l

A 4

Engine Autonomous multi die

S exploration

Temperatures

S ("nodels)
X Non scan
“ . . . X‘s

Multiple Objectives Latch
9 design
e
(8]
C
()
o
1)
()
'_
I+

# Measurements

SYNOPSYs
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How About Optimizing Across Design Abstractions?

* |SA, #ALU, FPU,
issue ports,
caches

e order of operations, loop
structure/content

e complex function mapping,
clock/self gating

13M Permutations

* memory configuration, cell mapping

v

SYNOPSYs
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Single-Abstraction: RL-based Layout Opt.

o

Power vs Frequency

Fixed HDL w/ ° . 5% higher Fmax

= manual layout tuning P :

5 (ootb baseline) !

a A Baseline RTL

E 7% better power ’,, @ Baseline RTL - RL

- Best layouts
for this design
Max Frequency (MHz)
SYNOPSYS

CCCCC



Multi-Abstraction: Functions-to-Layout Opt.

Power vs Frequency

A
@ )
= ° o ° 1 4 +1% higher Fmax
£ o) o) o) @/
£ o ®
g o ° ° o ! .
e} o ° A Baseline RTL
a o /4
= 6 © S . 0// @ Baseline RTL -> RL
0 o ,,6 o Explorable RTL -> RL
__—’ o
o (e]
()
-RO
6% better power \‘© O | 18% better MHz/mW
° vs. Baseline
Max Frequency (MHz)
SYNOPSYS Ll LI
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Top-20 Results: 5 Different Design Configs

Power vs Frequency

A
© )
s O . ° LA 1% higher Fmax Lrm
X X x

% X 5 ° @/ @ Baseline RTL -> RL
5 o (] 4+ /
< ] ¢ RTL1->RL
g * X ® y
= ¥ 0O e / X RTL2 -> RL
g O A Z
I oot mRTL3->RL

el A A RTL4 ->RL

° ®

= RTIS_>RL

-6% better power \‘© x| 18% better MHz/mW
o vS. Baseline

Max Frequency (MHz)
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Functions with Different Layout Characteristics

Power vs Frequency

RTL2: Balanced
¢ RTL4: Fast
1

A Baseline RTL

RL now trained to X
recognize these =
different design traits *

@ Baseline RTL -> RL
¢ RTL1->RL
X RTL2 -> RL
B RTL3 ->RL
A RTL4 ->RL
#® RTL5 -> RL

Total Power (mW)

RTL1: Energy Efficient

Max Frequency (MHz)

SYNAPSYs MW
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So, Which Design Variant is the Best One?

Power vs Frequency Area vs Routability

A Original RTL o
O X (&)
X
+ X
« A NS ARTLz
= " . ° RTL2 RTL3 *
E * RTL3 ™ x o~ .- x 8 °
5 = *
: D iy ? ° o RTL4 & TO
g R *B " ° RTL4 O
: TLs % o K ;
A o K< ° Il
o % ,/
RTL1
RTI;1 s N el
Max Frequency (MHz) Routability

SYNAPSYs
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Recentering Design Functions-to-Layout

Using Al to quickly traverse problem space towards ‘learned’ solutions

Frequency

Power Area

SYNOPSYs

CCCCC



1) Objective: Energy Efficiency

Frequency

Total Power (mW)

Power Area

SYNOPSYs
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Power vs Frequency

A
L ®
= u
[ ] Xx
o =
+
* @
°
%
3 <><>
RTL1

Max Frequency (MHz)
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2) Objective: Performance

Power vs Frequency

Frequency =

O
_ } *x_ % RIL4
= A
) & 1)
% "o
: A
o Ap
Power Area ° %
L
o <o

Max Frequency (MHz)

SYNOPSYs



3) Objective: Area

Frequency

Power Area

SYNOPSYS

Area vs Routability

[5) (&)
X (&)
x X
+
oo X,
X O
o A
* I
A 5] 1]
A II
/
¢ 4
,/
(4
,/

Routability
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Limitations of the RL-based Opt. Paradigm

1. Creating design variants is a high-effort task
* Verifying even a single version of a design is difficult, how to scale?

2. Evaluating design variants can be slow
* Typically involves synthesis, P&R, timing/power/IR/etc. analysis

SYNOPSYS L]
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Augmenting RL with GenAl -
A World of Opportunity

Al-Assisted Hardware Design Tutorial - HotChips 2024

SYNOPSYS
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2"d Wave of Al : Generative Models Coming into Play

= —> Design debugging —
01001 —
RN | —> Design recommendations — — :]’ - — | * | —
RN
~‘~ . S Desl s ]
Captured Foqndatlon esign analysis L. Natural ———
Design F — R Language Queries
“Journeys” Moadels Interaction
" = PPA strategies -
—>  Finding similar solutions —
ELECTRONIC REUSABLE TASK “COPILOT”
DESIGN DATA COMPONENTS ADAPTATION INTERFACE

SYNOPSYS
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Augmenting RL Opt. with Generative Al

* RL (Optimization)

Uses tool engines to create and evaluate
design data on the fly

Signoff-accurate: Results are outcomes of
existing tooling

Overall slower, relies on process-level
distribution

Semi-automatic: Requires significant
effort in describing design spaces,
outcome metrics

Good at identifying optimality

* GenAl (Generation)

* Captures data history from prior design
journeys

* Speculative: Results are outcomes of
trained neural networks

 Qverall faster, relies on data-level
parallelization

* Highly autonomous: Capable of traversing
the data abstraction stack quickly, and
with limited guidance

Good at generating optionality

SYNOPSYS
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Remember: Limitations of RL-based Opt.

1. Creating design variants is a high-effort task
* Verifying even a single version of a design is difficult, how to scale?
2. Evaluating design variants can be slow

* Typically involves synthesis, P&R, timing/power/IR/etc. analysis

SYNOPSYs L))
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1. Research in HDL Generation

Workflow for Data, Fine-tuning, Evaluation, and Verification/Feedback Pipeline for HDL-GPT

Optionality

Comparison vs NYU Eval Set Il

Data Pi i LLM Fi t Pi i E | i Pi | Challenge HDL-GPT
dala ripeline o Inetune ripeline = valuation rFipeline Getting Started 1
Raw Data 3 Base LLM selection - Code Generation Eval Basics 1
° £ 1 — || 1. NYU Eval Setland Set II Vectors 0.89
v Q- 1| 2. NVIDIA Benchmark i
Preprocessing that involves e Fine-tuning using PEFT Q Module Hierarchy 039
.. . © — Procedures 0.88
de-duplication, custom filters. < @ ! =) Y
L : ; More Features 0.63
e | Fine-tuned Base LLMs < Code Explanations (LLM Grading) e —
Detect Language. Embed ' l ' 1 Multiplexers 1
circuit descriptions in code. NEFTune (QoR imprOVement) BUg AnaIVSIS Tasks (LLM Grading) Arithmetic Circuits 0.57
@ v @) l v K-Map to Circuits 0.75
Annotate and Augment Code Fine-Tune HDL-Chat Model P Generation Tasks (LLM Grading) Latches & Flip-flops | 0.94
Counters 0.5
"‘ Problematic cases as feedback using one-shot prompting ‘ a Shift Registers 0.44
9
Cellular Automata 0.67
GDS |« PNR |« Synthesize “Pacs Validate (Pass/Fail) [« Synopsys VCS Compiler FSM 0.61
Va“dation Pipeline Larger Circuits 0.71
Find bugs 0.6
Average 0.73
SYNopsys HO¥
CH I P S
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2. Researchin
PPA Speculation

* Challenge: Evaluation of
design options slow,
compute intensive

* Approach: Use GCNs for
end-to-end PPA speculation

10X faster evaluation,
broader and deeper search

RTL Parameters —

Optimality

( )
RTL Generation <«— RTL Design
_ J
I RTL
( )
RTL Elaboration
_ J

pr———— e ————————

Elaborated
Netist Oyr Approach

:' | |
PDK Logic Synthesis S
i \ gic oy ) Timing ) FastPASE |
L ; L Target J End-to-End ;
i Placement/ Routing B QoR Models i
: 1k | Pryscal | End-to-End PPA |
\ A= | Design PPA /,’\\ Speculations /

(c) 2024 Synopsys, Inc.

PPA Metrics: Power, Area, WNS, TNS




Using GCNSs to Accelerate Design Evaluation

Optimality

Input Processing CircuitSeer Framework T Edge oR
! T . Regression | | T~ "Path "
Verilog File H Unoptimized + Graph Transformation (Section lll-C) | ——— . —g—; . Me?—i‘:s :
* * i 3 : ! MLP L '—‘: g
(".v, ".sv) Netlist h Logic Cones Path Graph |» ; [ MDetay | !
—_— Foom e m e | | |1 Traversal ||ldentification | |Generation | : ' || Slack )
. Synopsys FC | | | eSS NS eSS ———— - mmmmmee- = :
: . : e GNN | g Tt T 1 o o
| Elaboration Technology |+ | || Embeddings Encoder (Section IlI-D ' « Graph | || Circuit
:[ & Binding H Mapping ]: g Erpecnos nooder] 2| | Sowion | |__iBesession | | | Merics
tooooooooommomommooones ===='1 | \|I[Logic in| [Attention-Based Path || WE) | . [Pooling] | [: [WNS | :
(T Structural Information || Paths Encoder Embeddings : — Layer | '/ |!| TNS .
(™ Functional Information ettt L e |
® CircuitSeer ® Transformer [1] » XGBoost [2] :
serv wb_dma usb_funct s38584 | PlaSCBénéhEgﬁée [ Cs
18 A 15 4 15 A 18 -
g 151 12 12 15 1 B’ 103_2 - WY [T T mEEr i >500X
7:? 1 94 9 - 12 4 g % i E E
g 6 4 sl faster
g 7 6 E ' ' ' !
2 6 6 o il 1885 .
. 54 N N L e e e exploration
o © i ! i
0 3 6 9 12 15 18 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 18 < (\1 > ("' %B:
Actual Delay (ns) € 6((\ of )
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Summary — Al-Assisted Design

 RL has enabled the 15t wave of Al in chip design (optimization)
* Applications up and down the data abstraction stack

* GenAlis opening up opportunities to tackle the design process holistically
* Traverse data abstractions more efficiency

* Next level challenges emerge
* High-level planning driven by reuse, past experiences
* Fast assessment of design quality for functional correctness and performance

* Technology advancing very rapidly, accelerating pace of Al-assisted design
SYNOPSYS L L]
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SYNOPSYS

Thank you!
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