AI-Assisted Chip Design Tutorial

HotChips

Stelios Diamantidis

Synopsys Distinguished Architect

25 August 2025

(c) 2024 Synopsys, Inc.

Al-driven Optimization for Chip Design

- 1. Motivation Why AI for Optimization
- 2. The Reinforcement-Learning Optimization Paradigm
 - Search spaces, acquisition functions, metrics/KPIs, pareto fronts, learning
- 3. Applications of RL-driven Optimization
 - Physical design, micro-architecture, search-based verification, test, analog, 3D exploration
- 4. Augmenting RL with GenAI A World of Opportunity
 - Optionality vs. optimality, evolution of human-compute i/f, data abstractions

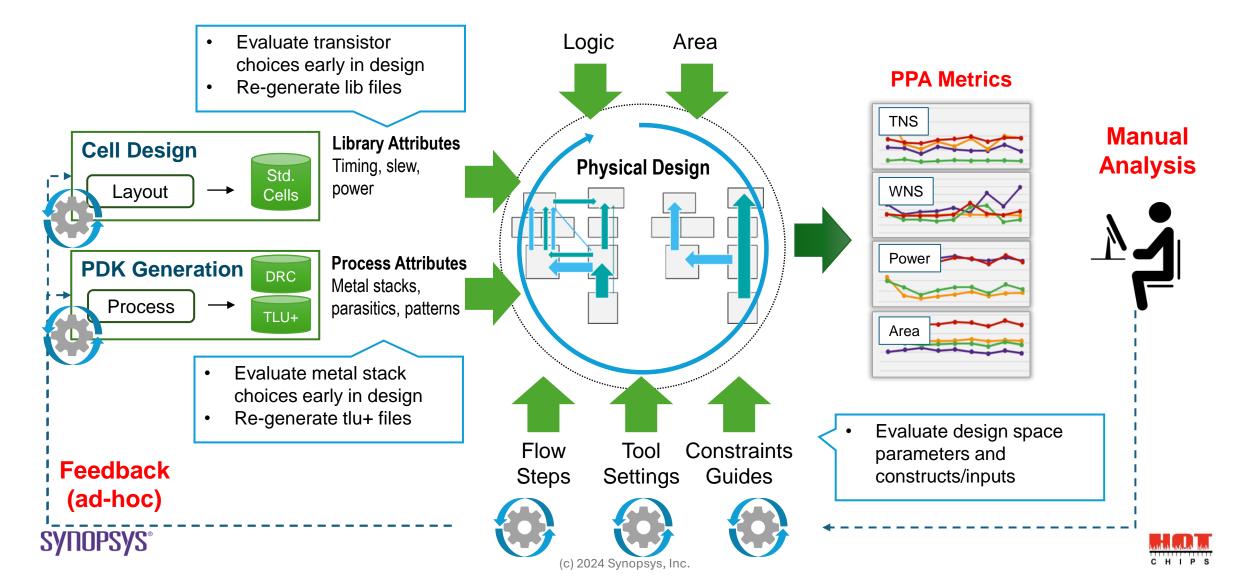
Disclaimer

- This is a technology tutorial
- Several examples have been drawn from Synopsys research in AI
- The capabilities presented may not be indicative of Synopsys products
- For product-related information, please contact Synopsys sales

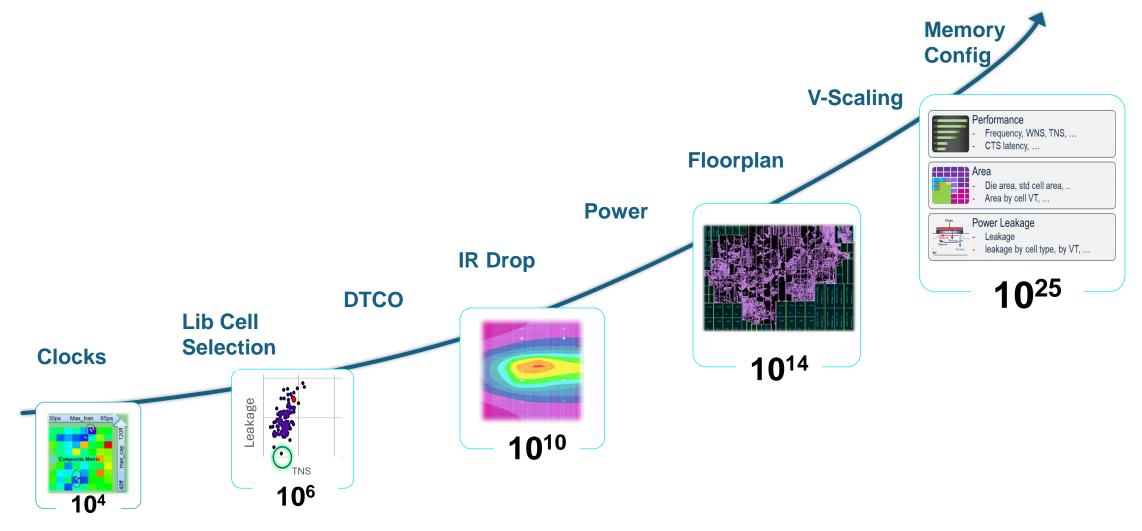
Motivation – Why Al for Optimization

Al-Assisted Hardware Design Tutorial – HotChips 2024

Chip Design: A Near-Infinite Problem Space

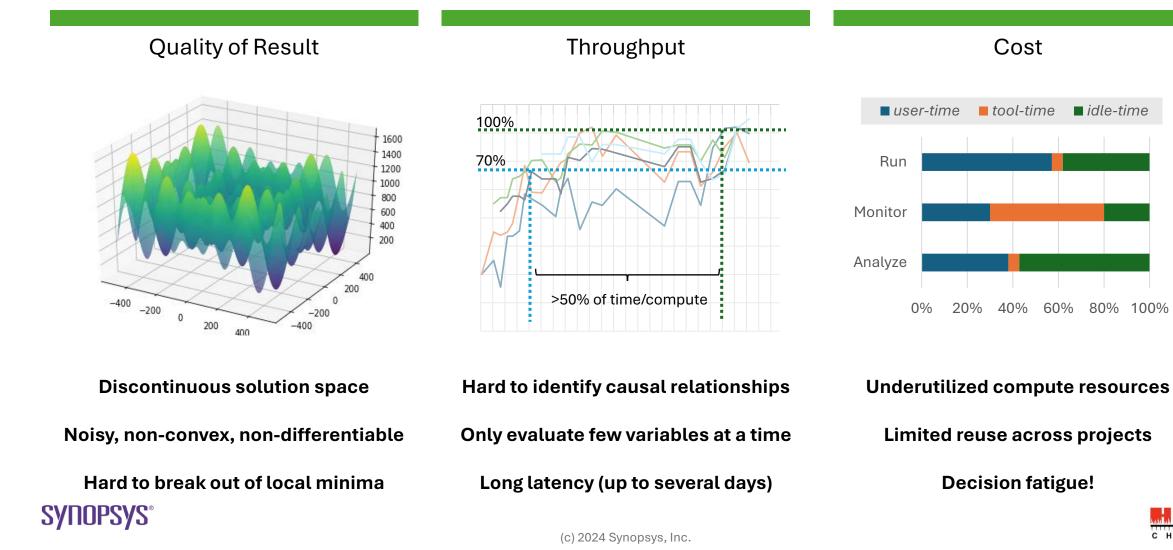


Design Complexity Grows Exponentially

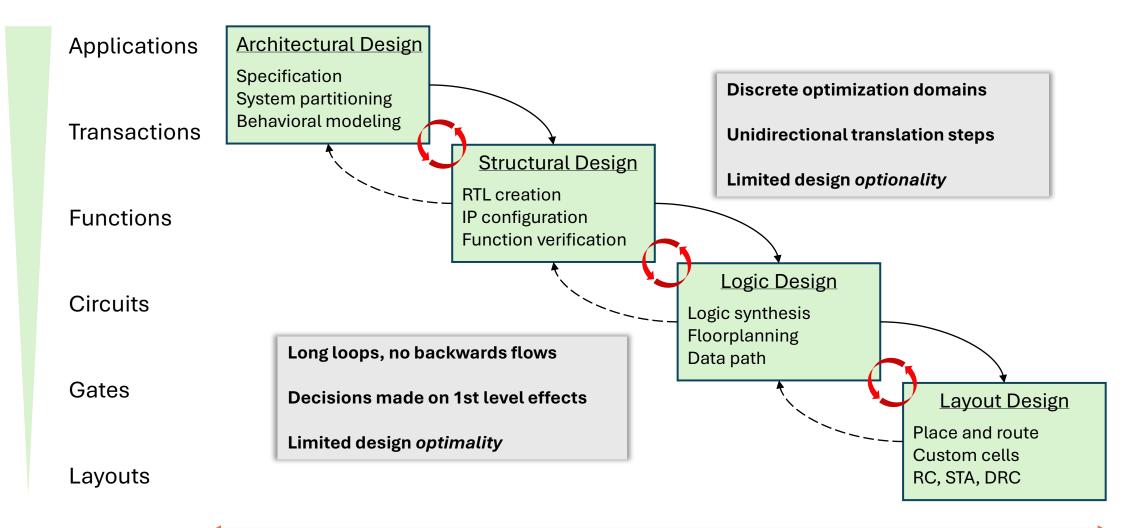


SYNOPSYS[®]

Implication of Design Complexity



A Cascade of Intractable Problems



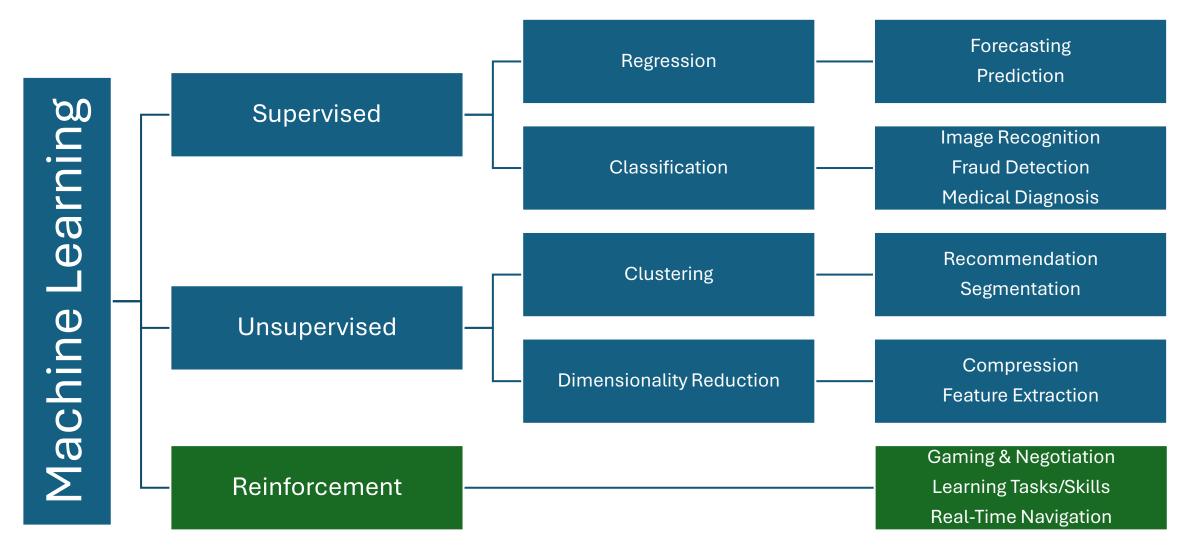
10s-100s of engineers, 18-24 months of development

(c) 2024 Synopsys, Inc.

The Reinforcement-Learning Optimization Paradigm

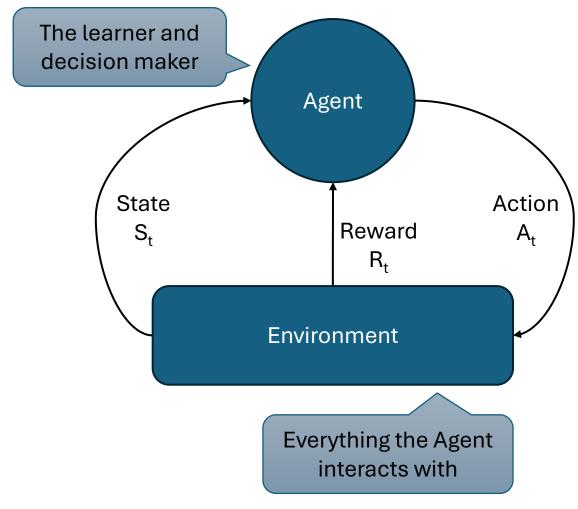
Al-Assisted Hardware Design Tutorial – HotChips 2024

What is Reinforcement Learning (RL)?



SYNOPSYS°

How Does Reinforcement Learning Work?

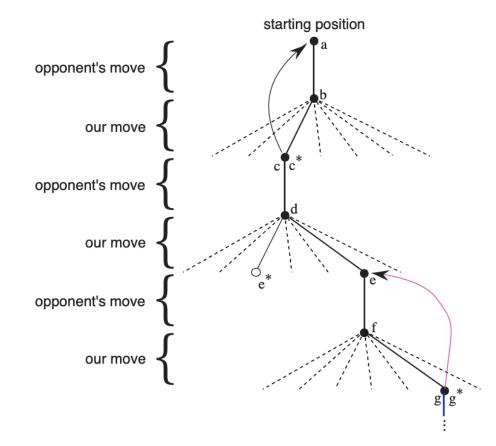


https://www.synopsys.com/glossary/what-is-reinforcement-learning.html

SYNOPSYS[®]

- 1) The Agent observes the environment's state ${\rm S}_{\rm t}$
- 2) The Agent selects an action A_t and applies it to the environment
- 3) The Agent receives a reward R_t
 - Goal is to maximize this reward over time
- 4) A new state S_{t+1} is entered
- Generally, the Agent implements a mapping from states to probabilities of possible actions
- RL algorithms can be model-based or model-free (twin)
 - Value-based: Estimate value function given enough trajectories (SARSA, Q-learning)
 - Policy-based: Directly estimate optimal policy (Monte-Carlo, deterministic policy gradient)

Benefits of Reinforcement Learning



Citation. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The MIT Press.

SALIOHZAZ

- Focuses on the problem as a whole

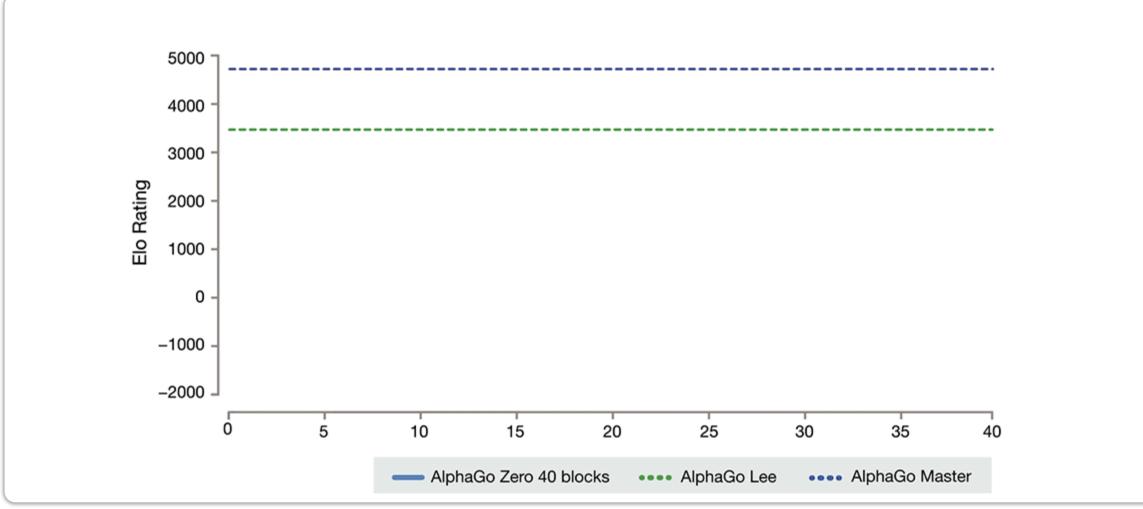
 RL understands the goal, and can trade off short-term rewards for long-term benefits
- Does not need a separate data collection step
 - Training data is the Agent's experience, not a separate set established a-priori
- Works in dynamic, uncertain envs

 RL is inherently adaptive and built to respond to changes in the environment

RL can seek a long-term goal while exploring various possibilities autonomously

RL Example: Learning to Play GO

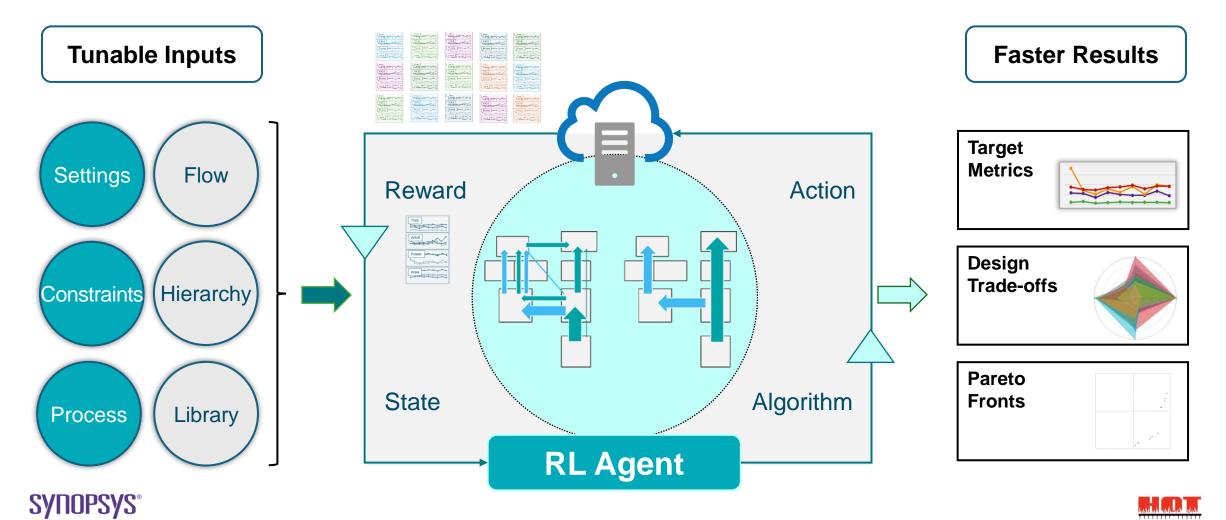
DeepMind AlphaGo goes from zero to world champion in 40 days



SYNOPSYS[®]

Example: https://deepmind.com/blog/alphago-zero-learning-scratch/

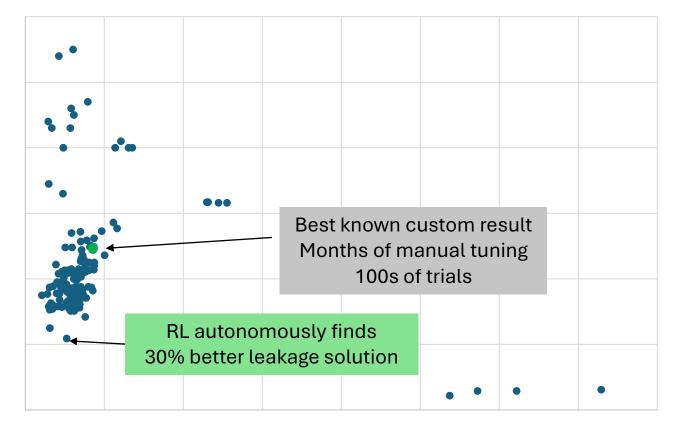
Applying RL to Chip Design Problems



(c) 2024 Synopsys, Inc.

AI-Assisted Design Search

TNS vs. Leakage



Problem Statement:

Achieve lower leakage while maintaining timing

Search Space

- Design, tool, flow parameters
- Library cell parameters

Objectives (prioritized)

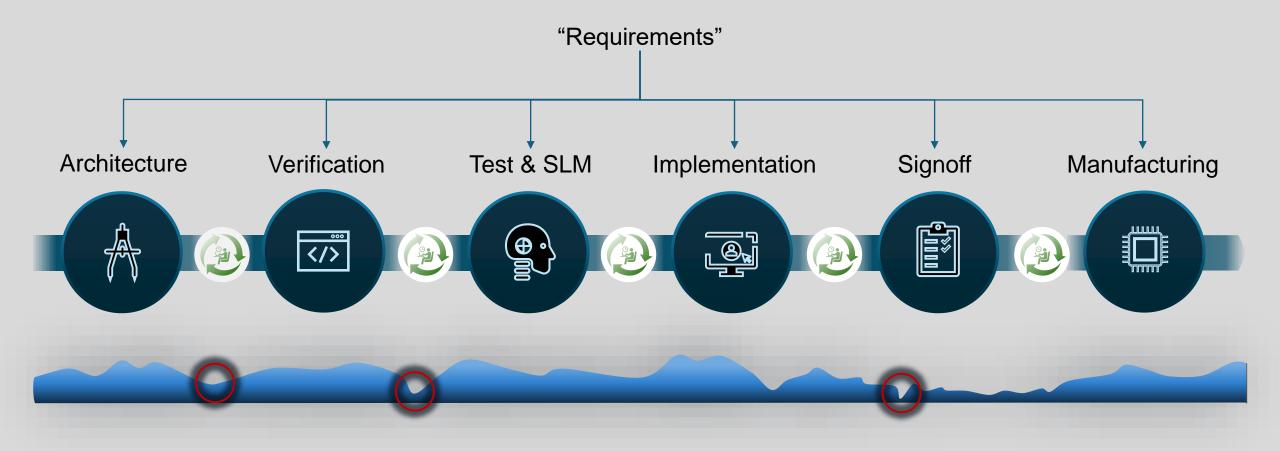
- Leakage
- TNS
- Secondary (e.g. DRC etc.)

Leakage

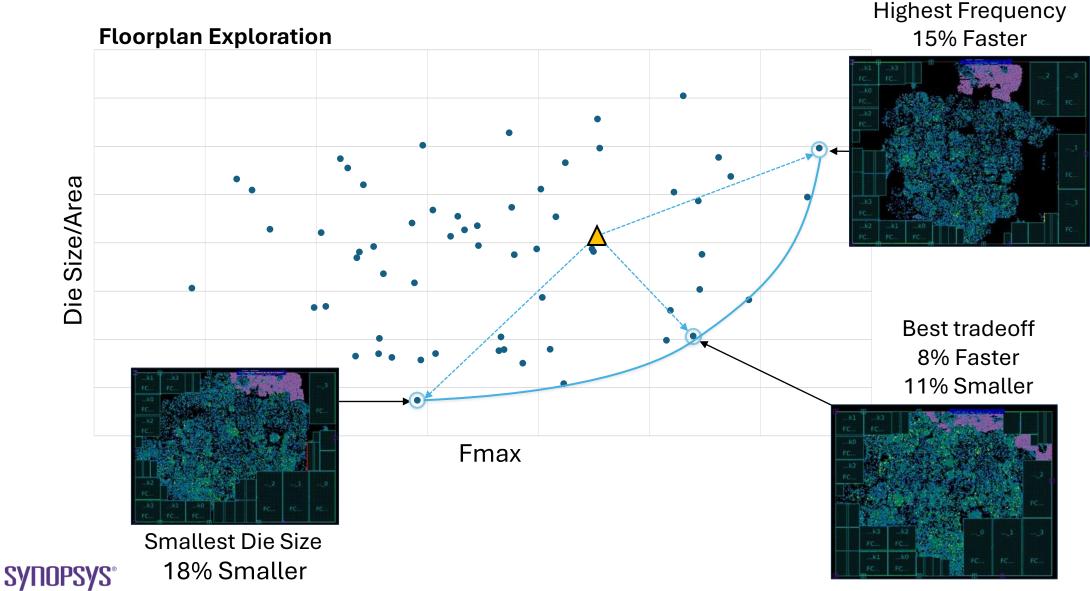
Applications of RL-driven Optimization

Al-Assisted Hardware Design Tutorial – HotChips 2024

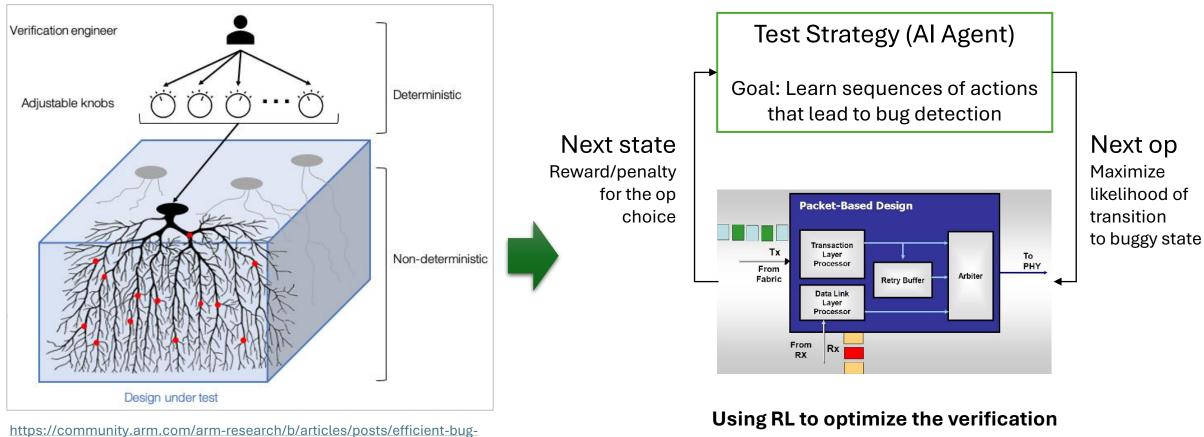
Opportunities to Apply RL Opt. Throughout the Flow



AI-Assisted Digital Implementation



AI-Assisted Verification



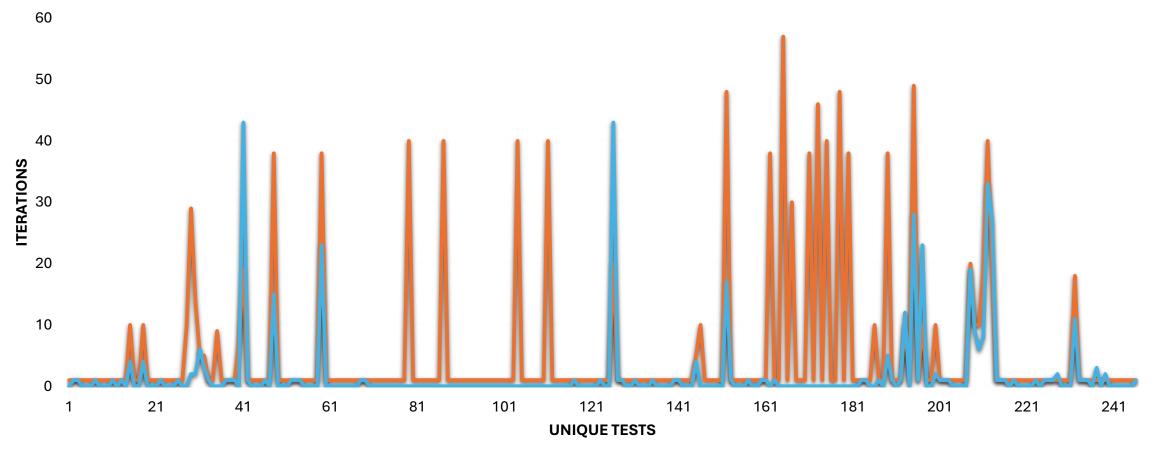
process

SYNOPSYS[®]

discovery-with-machine-learning-for-hardware-verification

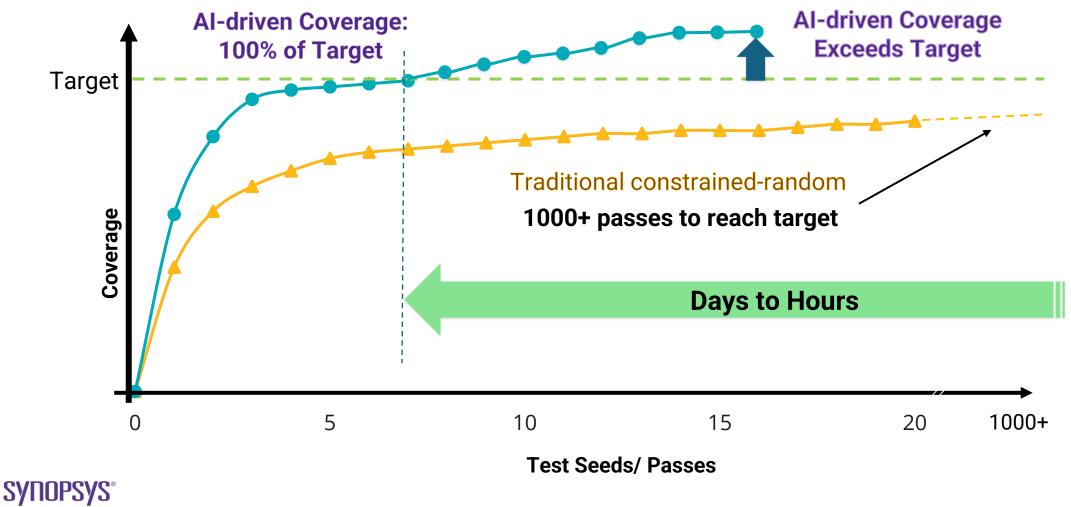
Example: Scheduling Highest ROI Tests

Regression Test Distribution



SYNOPSYS°

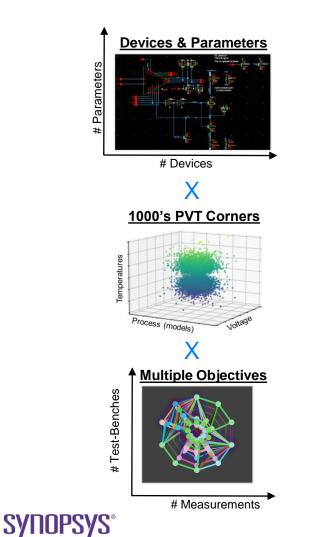
Enabling Faster Time To Closure

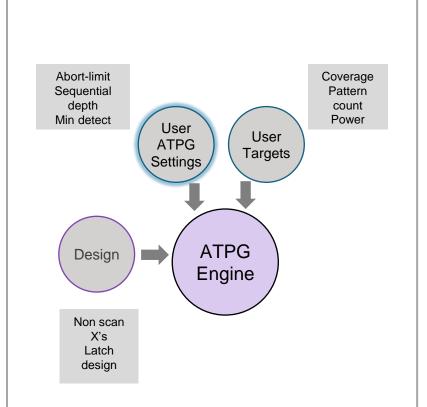


(c) 2024 Synopsys, Inc.

And Many More Applications..

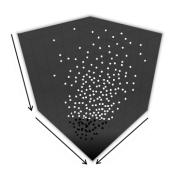
Circuit Optimization





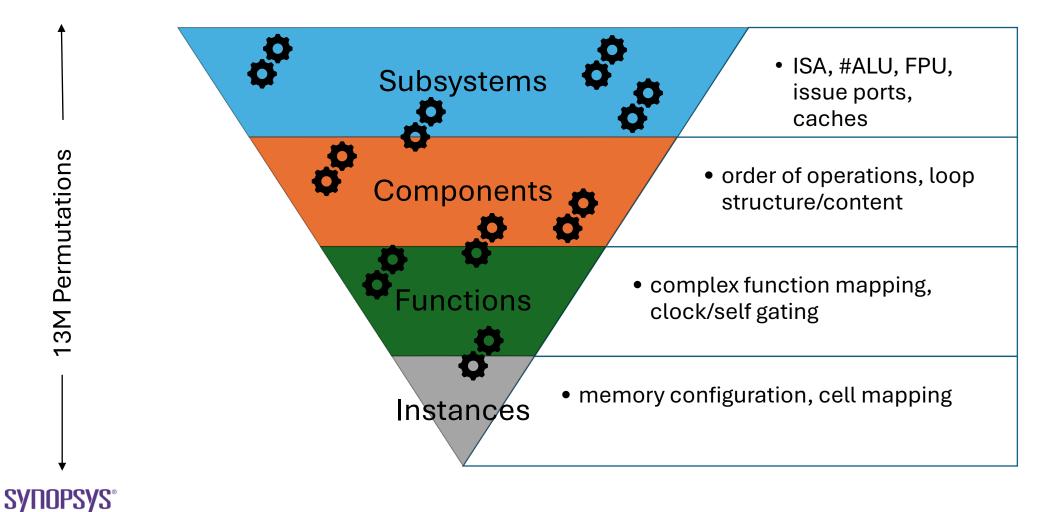
Test/ATPG

3D Integration



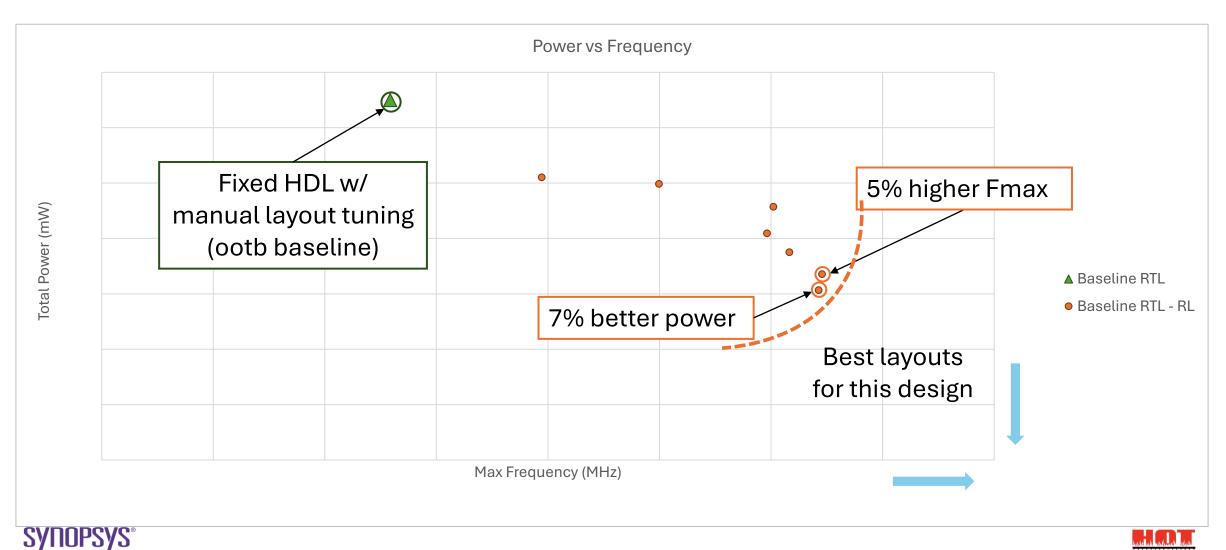
Autonomous multi die exploration

How About Optimizing Across Design Abstractions?

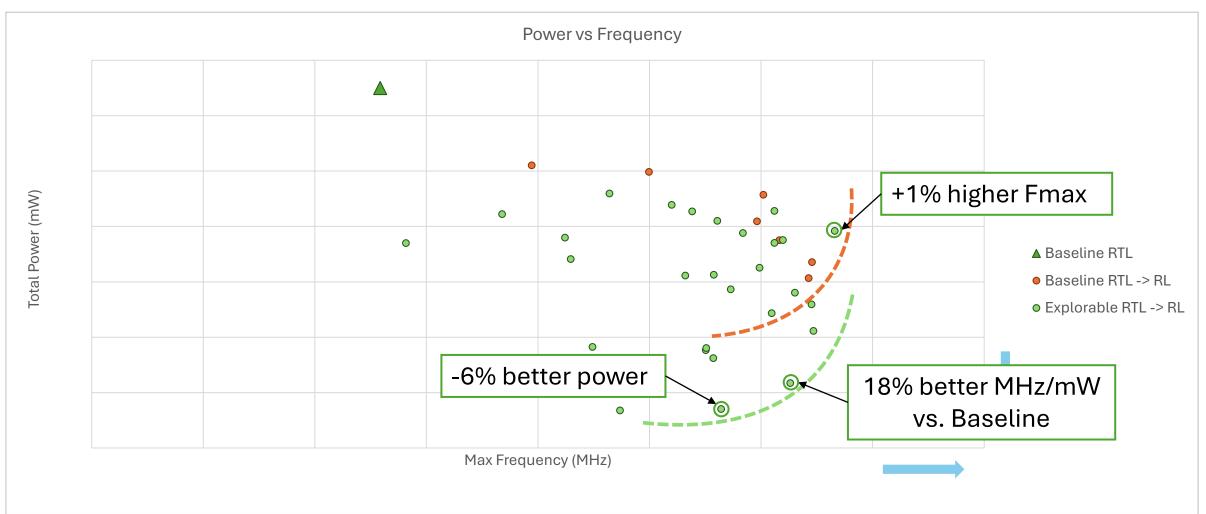


(c) 2024 Synopsys, Inc.

Single-Abstraction: RL-based Layout Opt.

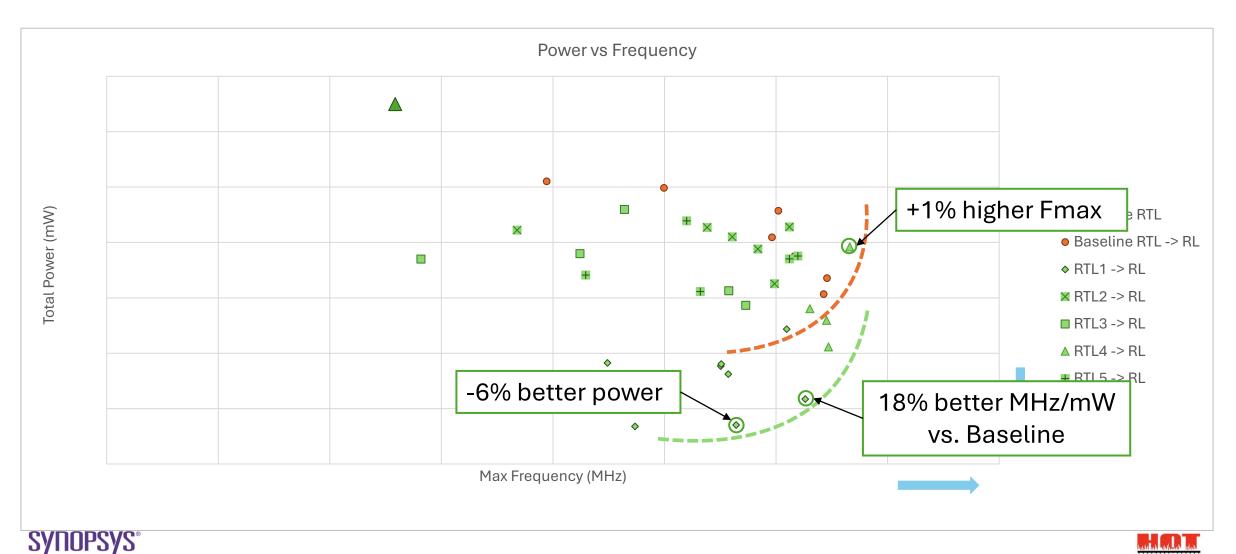


Multi-Abstraction: Functions-to-Layout Opt.

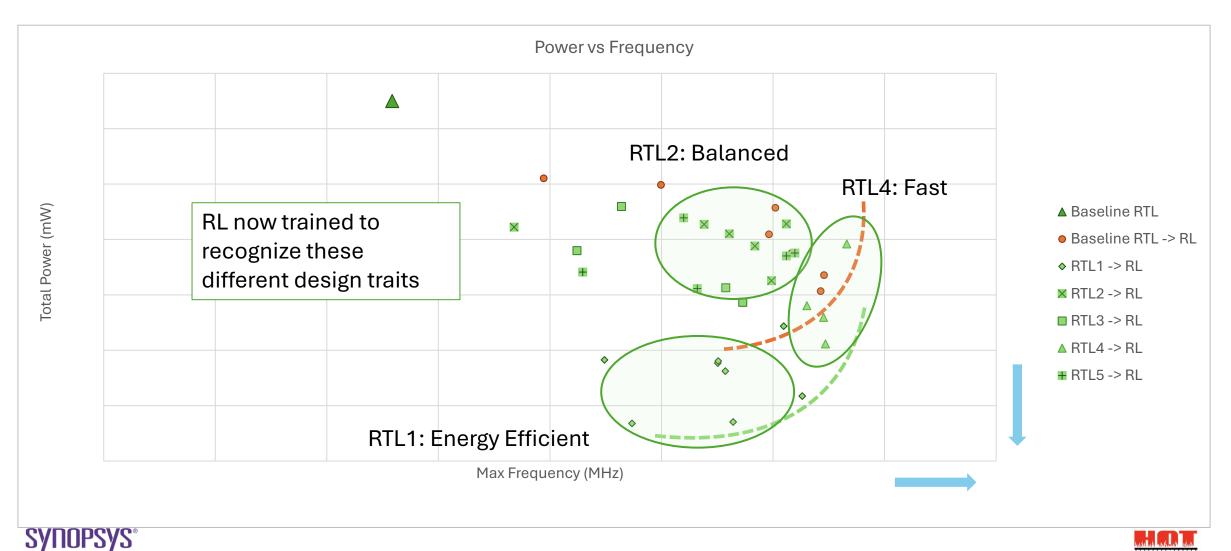


SYNOPSYS®

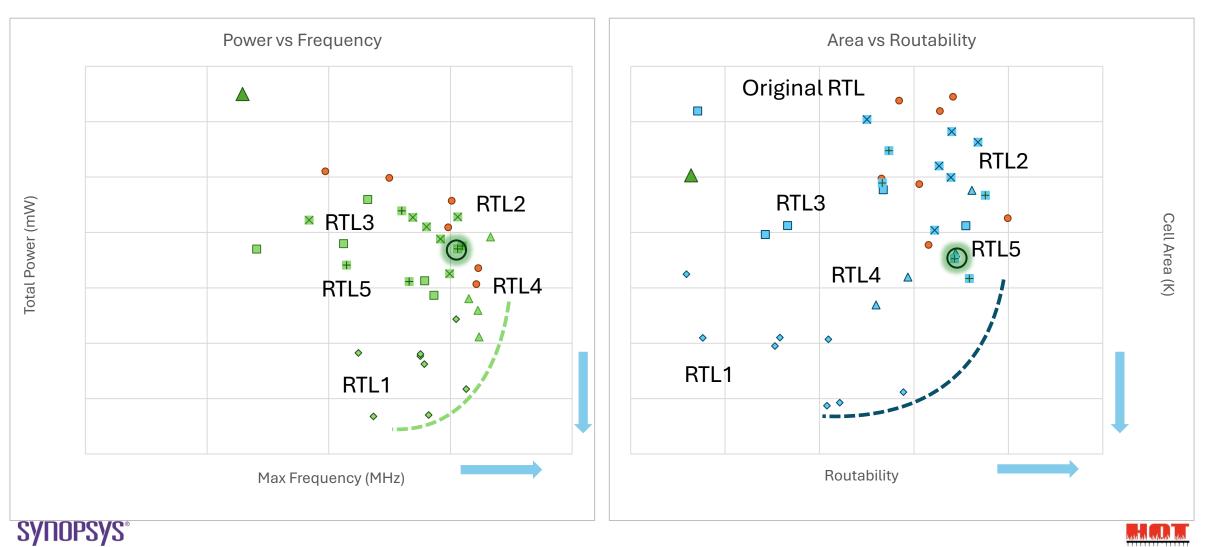
Top-20 Results: 5 Different Design Configs



Functions with Different Layout Characteristics



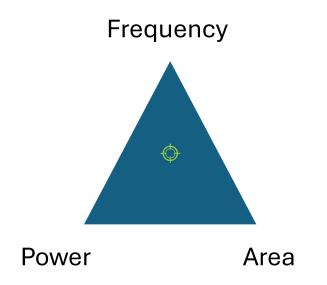
So, Which Design Variant is the Best One?



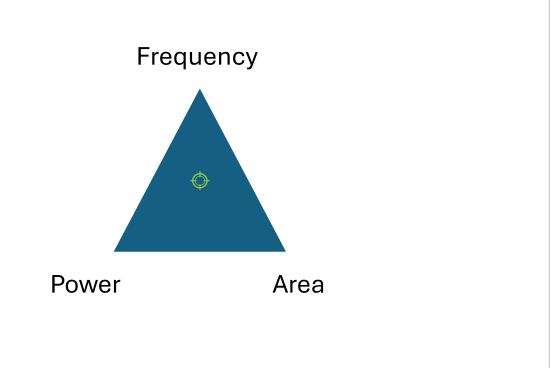
(c) 2024 Synopsys, Inc.

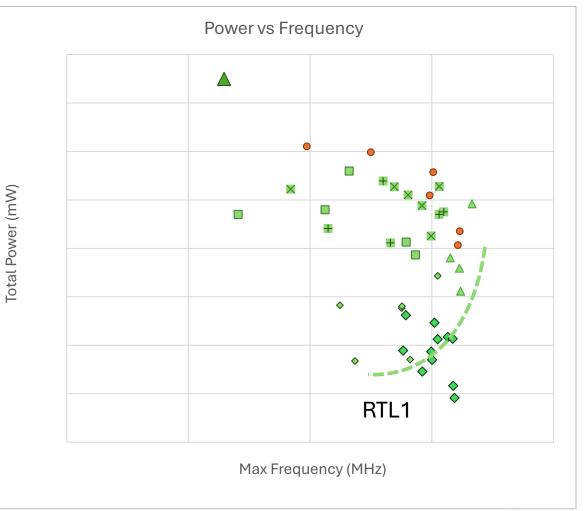
Recentering Design Functions-to-Layout

Using AI to quickly traverse problem space towards 'learned' solutions



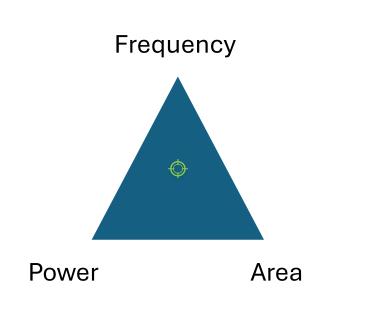
1) Objective: Energy Efficiency

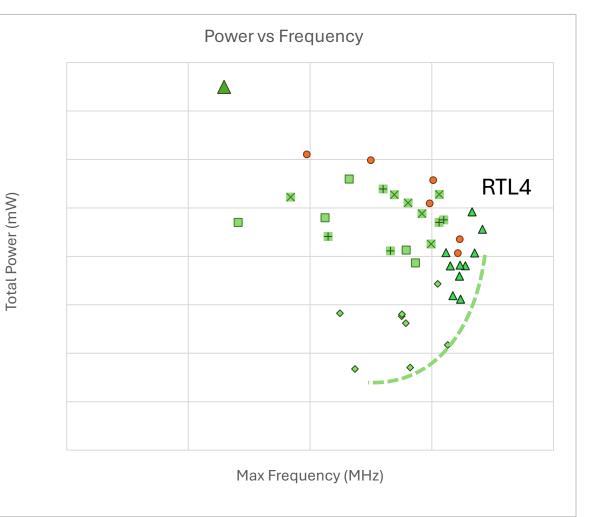




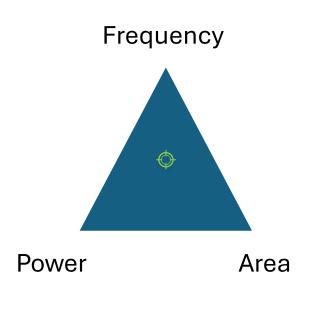
SYNOPSYS[®]

2) Objective: Performance





3) Objective: Area





SYNOPSYS[®]

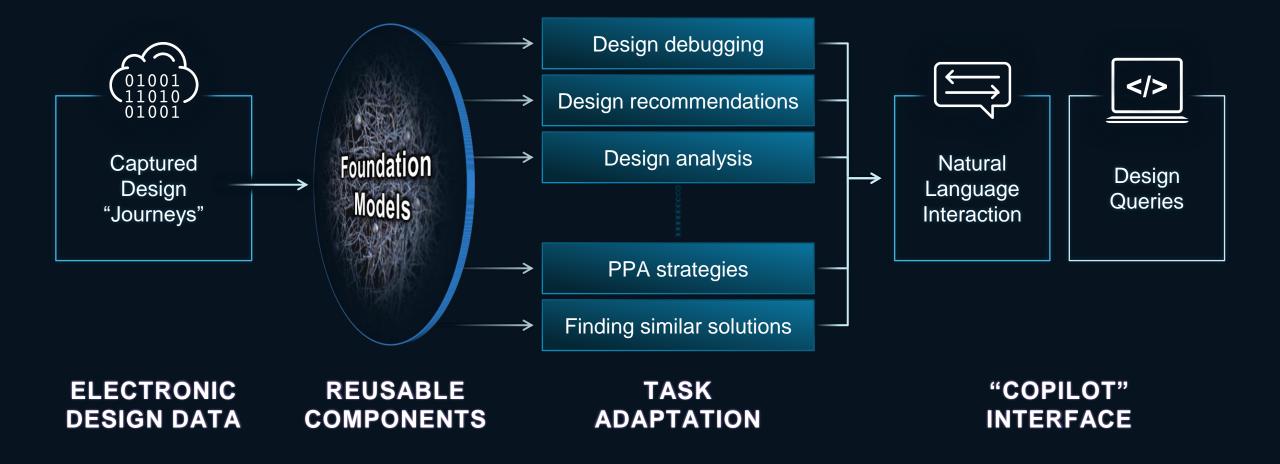
Limitations of the RL-based Opt. Paradigm

- 1. Creating design variants is a high-effort task
 - Verifying even a single version of a design is difficult, how to scale?
- 2. Evaluating design variants can be slow
 - Typically involves synthesis, P&R, timing/power/IR/etc. analysis

Augmenting RL with GenAl – A World of Opportunity

Al-Assisted Hardware Design Tutorial – HotChips 2024

2nd Wave of AI : Generative Models Coming into Play



Ref: Adapted from the Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM)

(c) 2024 Synopsys, Inc.

Augmenting RL Opt. with Generative AI

- RL (Optimization)
 - Uses tool engines to create and evaluate design data on the fly
 - Signoff-accurate: Results are outcomes of existing tooling
 - Overall slower, relies on process-level distribution
 - Semi-automatic: Requires significant effort in describing design spaces, outcome metrics

Good at identifying optimality

• GenAl (Generation)

- Captures data history from prior design journeys
- Speculative: Results are outcomes of trained neural networks
- Overall faster, relies on data-level parallelization
- Highly autonomous: Capable of traversing the data abstraction stack quickly, and with limited guidance

Good at generating **optionality**

SYNOPSYS[®]

Remember: Limitations of RL-based Opt.

- 1. Creating design variants is a high-effort task
 - Verifying even a single version of a design is difficult, how to scale?
- 2. Evaluating design variants can be slow
 - Typically involves synthesis, P&R, timing/power/IR/etc. analysis

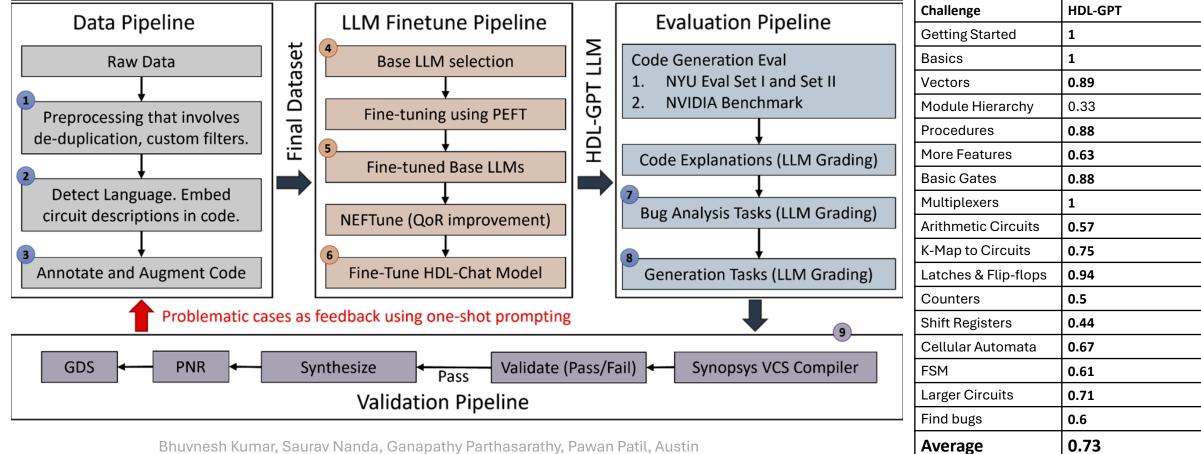
Optionality

Optimality

1. Research in HDL Generation

Workflow for Data, Fine-tuning, Evaluation, and Verification/Feedback Pipeline for HDL-GPT

Comparison vs NYU Eval Set II



Bhuvnesh Kumar, Saurav Nanda, Ganapathy Parthasarathy, Pawan Patil, Austin Tsai and Parivesh Choudhary, "HDL-GPT: High-Quality HDL is All You Need," 2024 Design Automation Conference (DAC)

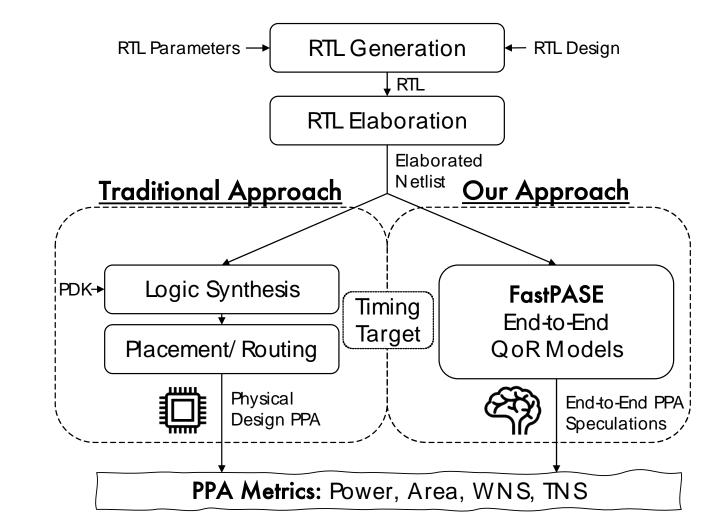
SYNOPSYS°

arXiv:2407.18423v1 [cs.LG] 25 Jul 2024

2. Research in PPA Speculation

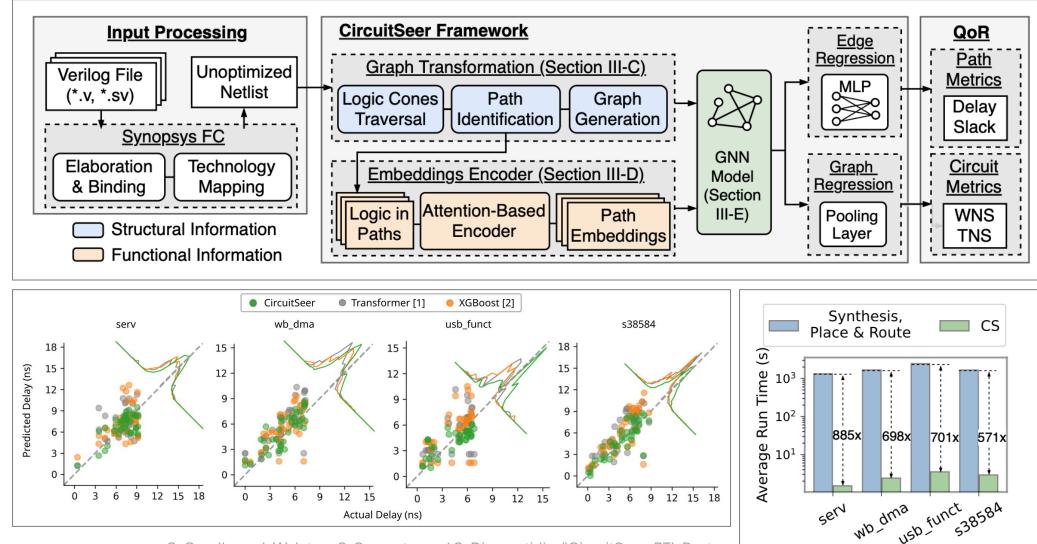
- Challenge: Evaluation of design options slow, compute intensive
- Approach: Use GCNs for end-to-end PPA speculation

• 10X faster evaluation, broader and deeper search



A. Levy, J. Walston, S. Samanta, P. Raina and S. Diamantidis, "FastPASE: An AI-Driven Fast PPA Speculation Engine for RTL Design Space Optimization," 2024 25th International Symposium on Quality Electronic Design (ISQED)

Using GCNs to Accelerate Design Evaluation



SYNOPSYS°

S. Gandham, J. Walston, S. Samanta, and S. Diamantidis, "CircuitSeer: RTL Post-PnR Delay Prediction via Coupling Functional and Structural Representation" 2024 ICCAD (accepted) (c) 2024 Synopsys, Inc. >500X faster exploration TAT

Optimality

Summary – AI-Assisted Design

- RL has enabled the 1st wave of AI in chip design (optimization)
 - Applications up and down the data abstraction stack
- GenAl is opening up opportunities to tackle the design process holistically
 - Traverse data abstractions more efficiency
- Next level challenges emerge
 - High-level planning driven by reuse, past experiences
 - Fast assessment of design quality for functional correctness and performance
- Technology advancing very rapidly, accelerating pace of AI-assisted design

SYNOPSYS°

Thank you!

(c) 2024 Synopsys, Inc.